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Abstract

In this paper, we apply the high order WENO schemes to orthogonal uniform grid
in cylindrical and spherical geometry. The 2-D or 3-D equations can be reduced to
1-D equations if the problem has the angular and radial symmetry. Several imple-
mentations are considered. It was shown that only high order WENO finite-volume
schemes can achieve both the high order accuracy and the conservation. we have
also shown that the global flux-splitting may fail to work even for high order WENO
finite-difference schemes.

Key words: WENO schemes, cylindrical geometry, spherical geometry, finite
volume method.

1 Introduction

WENO schemes become popular in numerical simulations involved discontinuities and sharp
fronts. Most of WENO applications in literatures are for Cartesian grid. In this paper, we
test WENO schemes for other types of orthogonal curvilinear uniform grid.

We consider a hyperbolic conservation law

ut +∇ · f(u) = 0, (1)

with an initial condition u0. If we know the solution is radially symmetric, we can rewrite the
equations in polar or spherical coordinates, obtaining a system that reduces to a problem in
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a single space variable r. In this paper, we are particularly interested in the Euler equations.
In the cylindrical geometry, the radially symmetry can be used to reduce the Euler equations
into

(ρ)t +
1

r
(rρu)r =0,

(ρu)t +
1

r
(rρ u2)r + pr=0, (2)

Et +
1

r
(r(E + p)u)r=0.

This system can be rewritten as

(ρ)t + (ρu)r =−(ρu)/r,

(ρu)t + (ρ u2 + p)r=−(ρu
2)/r, (3)

Et + (r(E + p)u)r =−((E + p)u)/r,

which has exactly the same form as the one-dimensional system of equations in Cartesian
grid with the addition of a geometric source term on the right-hand side.

Similarly, for spherical grid, the Euler equations can be reduced to

(ρ)t +
1

r2
(r2ρu)r =0,

(ρu)t +
1

r2
(r2ρ u2)r + pr =0, (4)

Et +
1

r

2

(r2(E + p)u)r =0,

or rewritten with a geometric source term

(ρ)t + (ρu)r =−(ρu)/r
2,

(ρu)t + (ρ u2 + p)r=−(ρu
2)/r2, (5)

Et + (r(E + p)u)r =−((E + p)u)/r2.

Even if the real problems of interest must be studied multi-dimensionally, radially symmetric
solutions are very valuable in testing and validating numerical codes. A highly accurate
solution to the one-dimensional problem can be computed on a fine grid and used to test
solutions computed with the multidimensional solver. This is useful not only in checking
that the code gives essentially the correct answer in at least some special cases, but also in
determining whether the numerical method is isotropic or suffer from grid-orientation effects
that lead to the results being better resolved in some directions than in others.
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Many numerical solvers solve the reduced problem as a purely one-dimensional problem with
a geometric source term (see [7]). This approach has a advantage that the existing numerical
solver for the Cartesian grid can be used directly without modification. For the fully discrete
methods for conservation law, discretized in both space and time, a Strang splitting [15]
strategy is often used to handle the geometric source term separately. For semi-discrete
method, where an ODE system is obtained by only space discretization (e.g., high order
WENO schemes), the source term can be incorporated into the ODE system directly.

However there is a severe drawback to solve (3) (or (5)) directly. The original multidimen-
sional conservation law is not preserved, i.e., the numerical schemes may not be conserva-
tive in multidimensional sense. Remember these equations are reduced from their multi-
dimensional version. The original conservation law in mass and energy is preserved theoret-
ically even in the reduced 1-D equations.

Conservation is a very important requirement in many numerical schemes to produce physical
solution, especially for problems involving shock waves. Lax and Wendroff [6] has proved that
the numerical solution of a conservative and consistent numerical scheme converges to the
weak solution if it converges as mesh is refined. Many numerical examples have shown that
a nonconservative method can fail to converge to a weak solution even if it has high order
accuracy. Later in our numerical tests, we will show that applying the high order WENO
fnite-difference schemes directly to the reduced system with the geometric source term yields
wrong shock location and strength.

In order to preserve the conservation law, especially to preserve the total mass and total
energy, we must adapt the numerical schemes for Cartesian geometry to the cylindrical and
spherical geometry. For a second order scheme, this adaptation is easy to implement. However
for a higher than second order scheme, this is not trivial.

WENO schemes are based on ENO scheme, which were first introduced by Harten, Osher,
Engquist, and Chakravarthy [1] in the form of cell averages. The key idea of ENO schemes
is to use the smoothest stencil among several candidates to approximate the fluxes at the
cell boundaries to a high order accuracy, and at the same time to avoid spurious oscillations
near shocks. The cell-averages (finite-volume) version of ENO schemes involves a procedure
of reconstructing point values from cell-averages and could become complicated and costly
for multi-dimensional problems. Later, Shu and Osher [12] developed a flux version (finite-
difference) of ENO schemes which do not require such a reconstruction procedure.

In one spatial dimension, the finite-volume schemes and the finite-difference schemes are
equivalent, both in numerical solution and accuracy and in complexity of coding and CPU
timing. However, for multi-spatial dimensions, the finite-volume code becomes much more
complicated and costly, while the finite-difference schemes are still very simple to code and
fast to compute. It was pointed by Shu [14] that the finite-volume WENO scheme is about
four times more expensive than the finite difference WENO scheme in 2-D, and is about
nine times more expensive in 3D. However a main restriction on the finite-difference WENO
schemes is that the third and higher order of accuracy can only be used on uniform rectan-
gular or smooth curvilinear grid. Even for the smooth curvilinear grid, the finite-difference

3



WENO schemes have a risk to lose the conservation that they have on a uniform Cartesian
grid. We will show it in the next section and in numerical tests.

The reconstruction of the point value from cell-average values is the key for both the finite-
difference and the finite-volume WENO schemes. The finite-volume WENO scheme recon-
structs the conservative variables at cell-interface, given the cell-average values of them. The
finite-difference WENO scheme does not have cell-average values explicitly and hence it takes
the point value of the flux at each grid point as a cell-average value of some flux function.
Shu [14] have given an excellent review and comparison between these two types of schemes.

The outline of the paper is as follows. In section , we proposed several approached to extend
the WENO finite-difference scheme for Cartesian grid to cylindrical and spherical grid. The
advantages and disadvantages of each approach are discussed and compared. We also com-
pared the global and local flux-splitting and pointed out the the global splitting is not not
robust for curvilinear orthogonal uniform grid. The high order WENO finite-volume schemes
are constructed in section 3.1. Finally, the numerical schemes are tested and compared with
the Sedov explosion problem.

2 High Order WENO Finite-Difference Schemes

Consider the 1-D scalar hyperbolic conservation law,

ut + f(u)x = 0. (6)

The WENO schemes for a uniform Cartesian grid can be written as

duj
dt
+

fj+ 1

2
− fj− 1

2

h
= 0 (7)

where fj+ 1
2
is the numerical flux at cell interface, and h is local grid spacing.

We first consider the finite-difference WENO schemes, since it can be easily extended to
multi-dimension. There are several approaches to extend the WENO schemes for Cartesian
grid to cylindrical and spherical grid.

2.1 Extension to cylindrical and spherical grid

In the first approach, we can solve the equations with geometric source term, such as (3)
and (5). Since the convection term is exactly the same as that in Cartesian grid, the WENO
schemes can be plugged in immediately. A semi-discrete ODE system with high order ac-
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curate discretization in space can be constructed easily. If we denote the geometric source
term to be g(r, u), then the WENO finite-difference scheme yields,

duj
dt
+

fj+ 1

2
− fj− 1

2

h
= g(rj, uj), (8)

where g(rj, uj) = −(fj)/r
ν
j , and ν is a constant that depends only on the dimension. ν = 1 for

2-D cylindrical grid and ν = 2 for 3-D spherical grid. Note that the order of the discretization
is equal to the order of the WENO scheme.

There is a severe drawback for the approach (8). It does not preserve the original multi-
dimensional conservation law, which is

R
∫

0

u(t, r)rνdr =

R
∫

0

u(0, r)rνdr, (9)

If we discretize (9) with midpoint rule, we obtain

N
∑

j=0

unj
1

ν + 1
(rν+1

j+ 1

2

− rν+1
j− 1

2

) =
N
∑

j=0

u0
j

1

ν + 1
(rν+1

j+ 1

2

− rν+1
j− 1

2

) (10)

where u is the volume average value of u at cell [rj− 1
2
, rj+ 1

2
]. In a conservative numerical

scheme, we can replace uj with point value uj. It is clear that the WENO discretization (8)
is not conservative in the sense of (10).

The second approach is to do coordinate transformation x = 1
ν+1

rν+1. Then we obtain

∂(f(u)rν)

rν∂r
=

∂(f(u)rν)

∂x
. (11)

We can extend the high order WENO scheme to (11) since the grid in x is a smooth curvi-
linear grid. Denote

f̃(x, u) = f(u)rν = f(u) ((ν + 1)x)
ν

ν+1 .

Then as suggested by Shu [14], the WENO scheme for (11) will have form

∂(f(u)rν)

rν∂r
=

f̃j+ 1

2
− f̃j− 1

2

rνj dr
, (12)

where f̃j+ 1

2
is the numerical flux at the interface for uniform grid r. Although (12) does not

satisfy conservative form (10), it satisfies an approximate conservation law,

N
∑

j=0

ujr
ν
j dr = const,
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which is also important to have the solution converge to the weak solution. Unfortunately,
this approach does not work well near the origin (r = 0). It might be because that the flux
f(u) is flattened by the scaling factor rν , and it has large error near the origin r = 0. In
numerical experiments, we found the pressure became negative after a short time near the
origin.

The third approach is to use the flux generated from the Cartesian grid directly and modify
it for use of cylindrical and spherical geometry as

du

dt
+

rν
j+ 1

2

fj+ 1

2
− rν

j− 1
2

fj− 1

2

dVj

(13)

where dVj(ν) =
1

1+ν
(r1+ν

j+ 1

2

− r1+ν
j− 1

2

) is the local control volume. For the discretization of mo-

mentum equation, there is additional source term νp/r on the right side of the equation. To
be consistent with the conservation law in multi-dimension, this term must be discretized as
pj · dVj(ν)/dVj(ν − 1).

We will show that the numerical scheme (13) is of only second order if the high order
numerical flux fj+ 1

2
is calculated as in (7). We take the spherical geometry as an example.

At a fixed r = rj, we have

r2
j+ 1

2

fj+ 1

2
− r2

j− 1
2

fj− 1

2

r3
j+ 1

2

/3− r3
j− 1

2

/3
−

(

fj+ 1
2
− fj− 1

2

h
+
2fj
rj

)

= O(h2)

Therefore, (13) is only of second order.

2.2 Flux-splitting for finite-difference schemes

We can apply the 5th order WENO finite-difference scheme to (3) directly to achieve the
high order, though it is not a conservative scheme. For achieving numerical stability and
for avoiding entropy violation solutions, upwinding and flux-splitting approaches are used
in constructing the WENO flux. The flux is written as a sum of the positive and negative
fluxes, f±(u),

f(u) = f+(u) + f−(u),

where f+ has positive eigenvalues and f− has negative eigenvalues. There are several choices
for defining the flux. A simple choice is given by the Lax-Friedrichs splitting, which produces
very smooth fluxes,

f±(u) =
1

2
(f(u)± αu) ,

where α is taken as maxu |f
′(u)| over the relevant of u. If the range is locally defined, it is

called the local Lax-Friedrichs (LLF) splitting; if the range is global, it is called the global
Lax-Friedrichs splitting (LF). For lower order schemes the quality of the solution is usually
very sensitive to the choice of the splitting, and the Lax-Friedrichs flux is very diffusive. But
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it is claimed in [3] that this sensitivity is much less important for a higher-order method. It
is recommended in [4] that the global LF be used for fifth order WENO scheme. In numerous
examples of Cartesian grid, we have not observed the fifth order WENO scheme failed with
global LF. We have pointed out in [2] that LLF is required to achieve the conservation law
strictly in adaptive mesh method and parallel computation via domain decomposition. Even
in those cases, we found that a global LF can give reasonable results. Later we will find that
this may no longer true for spherical and cylindrical grid.

We remark that the LF may fail in other cases where the global α is far more larger than
the local α near the shock and other discontinuities.

We have investigated the possibility of developing conservative high order finite-difference
WENO schemes of form (13). As indicated in Shu [14], the high order WENO finite-difference
schemes can be constructed only for smooth non-uniform mesh.Our mesh in x = 1

ν
rν satisfies

this condition. However, the high order WENO scheme is constructed for ∂(f(u)rν)
∂r

only. The
numerical example showed that the (12) is no better than other discretization.

3 High Order WENO Finite-Volume Scheme

3.1 Finite-Volume discretization

WENO (or ENO) scheme can be of higher than second order. The high order WENO finite-
volume scheme of form (13) can be developed following the way of Liu et al. [8]. For finite-
volume scheme, we have cell-average values at each cell, defined by

uj(·, t) =
1

dV

r
j+1

2
∫

r
j− 1

2

u(r, t)rνdr.

Integrate the hyperbolic system

ut +
∂rνf(u)

rν∂r
= 0

over each cell, we obtain

ut = −
1

dV
(rνj+ 1

2

f(u(rj+ 1

2
, t))− rνj− 1

2

f(u(rj− 1

2
, t))).

To achieve the high order accuracy, we need to evaluate u(rj+ 1
2
, t) at interface r = rj+ 1

2
to

high order. First, from the given cell average u = {uj}, we can reconstruct a piecewise high
order interpolation polynomial R(r). Next the u(rj+ 1

2
, t) can be evaluated to high order by

R(x) locally. The flux at the interface then is evaluated by a numerical flux (approximate or
exact Riemann solvers). For example, one could use the simple Lax-Friedrichs flux, which is
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given by

f(u(rj+ 1

2
), t) =

1

2
(f(u+, t) + f(u−, t)− α(u+ − u−)),

where α is taken as the upper bound for the eigenvalues of the Jacobian at rj+ 1
2
, and u+ and

u− are the values of u(rj+ 1

2
) from the right and left side of interface.

3.2 Reconstruction procedure

Following the reconstruction procedure of Liu et al. [8], given cell averages {uj}, we can
immediately evaluate the point values of the solution’s primitive function W (r) at interfaces
W (rj+ 1

2
), where the primitive function is defined as

W (r) =

r
∫

rj
′
−

1
2

u(ξ, t)ξνdξ. (14)

Note that there is a difference between Cartesian and other orthogonal grids to define the
primitive function. However, if we set x = 1

/
νrν then

W (x) =

x
∫

xj
′
−

1
2

u(ξ, t)dξ, (15)

which is more like the primitive function defined by Liu et al. [8]. Differentiating (15) with
respect to x yields

u(x, t) =
d

dx
W (x). (16)

It is also obvious from (15) that

W (xj+ 1

2
) =

j
∑

i=j′
uidVi, (17)

where

dVi = xi+ 1
2
− xi− 1

2
=

1

ν + 1
(rνi+ 1

2

− rνi− 1

2

)

is the local control volume. Unlike the conservation law in 1-D uniform grid, the local control
volume is no longer constant here. It depends on the location of the cell.
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To reconstruct the solution, we interpolationW (x) on each stencil Sj = (xj−j1+ 1

2
, ..., xj+j2+ 1

2
)

to obtain a polynomial pj(x), i.e.,

pj(xl+ 1
2
) = W (xl+ 1

2
), l = j − j1, ..., j + j2.

Obviously the corresponding polynomial p′j(x) approximate the solution u(x, t) to high order.
The difference between our reconstructions and those in Liu et al. [8] is that the grid in x is
non-uniform in cylindrical and spherical grid.

The ENO schemes choose the least oscillation one among all possible stencils. The WENO
scheme instead is a convex combination of all possible stencils. Unlike in the uniform mesh,
the optimal weights for the WENO scheme now depend on the local grid spacing in x. For
example, the optimal weights for the third-order WENO scheme on stencil [xi−1, xi, xi+1] at
xi+ 1

2
is

C =



















x
i+1

2

−x
i− 1

2

x
i+1

2

−x
i− 3

2

−
x
i+1

2

−x
i− 1

2

x
i+3

2

−x
i− 3

2

, for stencil [xi−1, xi]

(x
i+1

2

−x
i− 3

2

)(x
i+1

2

−x
i− 1

2

)

(x
i+3

2

−x
i− 1

2

)(x
i+3

2

−xi 3
2

)
, for stencil [xi, xi+1]

(18)

It can be verified that the weights are 1
3
and 2

3
for uniform grid. In case of x = rν , we have

C0 =







ri+h
6ri−3h

if ν = 2
(3r2

i
+ 1

4
h2)(3r2

i
+6rih+ 13

4
h2)

6(3r2
i
−3rih+ 7

4
h2)(3r2

i
+ 9

4
h2)

if ν = 3

C1 =







2ri−h
6ri+3h

if ν = 2,
(6r2

i
− 3

2
rih+ 7

2
h2)(3r2

i
+ 1

4
h2)

(6r2
i
+ 3

2
rih+ 7

2
h2)(9r2

i
+ 27

4
h2)

, if ν = 3

The actual weight of the stencil in the convex combination can be evaluated by smoothness
indicator in each stencil. Here we use the measure taken from Jiang and Shu 1997 [4], which
amounts to a measure on the L2-norms of the derivatives. Again, when we evaluate the
smoothness measure, the non-uniformity of the grid should be considered. For the third-order
WENO scheme, it yields the measure as for the uniform grid. However for the fifth-order,
the results are different from those of the uniform grid.

We remark that for system of equations, the WENO reconstruction should be performed in
local characteristic fields.

4 Numerical Results

In this section, we show some numerical results for Sedov problems. We focus ourselves to the
results of WENO scheme. The reference solutions were calculated with second order HLLC
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Riemann solve with very fine grid.

4.1 Sedov Explosion Problem

The Sedov explosion problem (Sedov 1959) is a purely hydrodynamical example. The problem
involves the self-similar evolution of a cylindrical or spherical blast wave from a delta-function
initial pressure perturbation in an other wise homogeneous medium. To initialize the code,
we deposit a quantity of dimensionless energy ε = 1 into a small region of radius δr at the
center of the grid. The dimensionless pressure inside this volume, P0, is given by

P ′0 =
3(γ − 1)ε

(ν + 2)πδrν+1
,

where ν = 1 for cylindrical geometry and ν = 2 for spherical geometry. In running this
problem, we choose δr to be as large as the width of the ghost cells in order to minimize
the effects of the reflection boundary conditions. The density is set to ρ = 1 throughout the
grid and the pressure is set to a small value P0 = 10

−5 except in the explosion region. The
fluid is initially at rest. In the self-similar blast wave that develops for t > 0. the density,
pressure, and radial velocity are all functions of ξ = r/R(t). where

R(t) = βν(γ)

(

εt2

ρ0

)1/(ν+3)

Here βν is a dimensionless constant depending only on ν and γ; for γ = 1.4, β2 ≈ β3 ≈ 1 to
within a few percent. Just behind the shock front at ξ = 1 we have

ρ= ρ1 =
γ + 1

γ − 1
ρ0 (19)

P =P1 =
2

γ + 1
ρ0w

2 (20)

v= v1 =
2

γ + 1
w (21)

where w = dR/dt is the speed of the shock wave. The analytical solution of the Sedov
problem can be derived implicitly. Near the center of the grid (origin), the solutions are

ρ(ξ)/ρ1∝ ξ(ν+1)/(γ−1)

P (ξ)/P1=constant (22)

v(ξ)/v1∝ ξ (23)

Although there is an analytical solution for the reduced 1-D problem. It is defined implicitly
and not readily available. Therefore, we calculated the reference solutions with very fine grid
and conservative second order method.
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4.2 Results for two-dimensional Sedov problem

The 2D Sedov problem with cylindrical geometry can be reduced to 1-D problem with a
source term. The WENO scheme of (12) failed at t = 0.002424 due to the negative pressure.
At t = 0.002, the solution seems OK but has large difference from the reference solutions,
especially near the origin.

The fifth order WENO finite-difference scheme with LF flux-splitting failed to produce steep
shock front (see Fig.4.1-a) for both conservative 13 and nonconservative version 8. We initially
thought that it was due to the steep initial conditions for pressure. So we calculated the
solution with our conservative second order method to time t = 0.04 and then we advance
the solution from t = 0.04 using the WENO with LF flux-splitting. However, we obtained
almost the same results.
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Fig. 4.1-a. WENO finite-difference with LF
flux-splitting at t = 0.05
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Fig. 4.1-b. WENO finite-difference with LLF
flux-splitting at t = 0.05

The WENO finite-difference scheme with LLF flux-splitting gives steep shock front (see
4.1-b). However, Without the conservation, the shock front has wrong location. It is inter-
esting to see that the results for the modified conservative WENO scheme (13) match very
well with the reference solution although it has only second order accuracy.

4.3 Results for three-dimensional Sedov problem

The 3-D case is very similar to the 2-D case, except that now the finite-difference discretiza-
tion and finite-volume discretization of the source term are no longer the same. Since for
the conservative form, the source term is added only to the momentum equation, whether
the finite-difference or finite-volume discretization of the source term does not make any
difference in conservation of the mass and energy. In fact, if r is large enough, the difference
between these two discretization is O(h2). Near the origin (r = 0), the difference between
these two is large as (O(1/h)). We observed that the velocity and pressure is totally wrong
near the origin if the finite-difference discretization of the source term is used.
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Fig. 4.3-a. WENO finite-difference with LF
flux-splitting at t = 0.05
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Fig. 4.3-b. WENO finite-difference with LLF
flux-splitting at t = 0.05

We found that the local maximum sound speed near the shock front is about 1.5, while it
is about 310 near the origin. For the global LF flux-splitting, the flux f±(u) deviated the
local flux f(u) so much that it cannot reflect the local characteristics any more. That is
why the global LF failed for this example. For other examples we have tested so far, the
location of the global maximum sound speed is always close to the shock front. However, for
this example, the density is extremely low (about O(10−5) for 3-D case) near the origin and
pressure is relatively large (0.188), the local sound speed calculated by c2 = γp/ρ near the
origin is much larger than that near the shock front.
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Fig. 4.3-a. Results of the different discretiza-
tions for the source term near the origin.
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Fig. 4.3-b. Results of the third-order WENO
scheme for Sedov problem.

We also test the conservative WENO finite-difference scheme (12). If we start from t = 0,
the integration stops after a few time steps due to the negative pressure. We started the
simulation from t = 0.01 (scheme Eq.(13) is used before t = 0.01), the results are in good
agreement with the reference solutions except at the origin. Fig. 4.3-a shows that the high
order scheme (12) has almost the same results as the secord order scheme (13). Fig. 4.3-b
shows that the scheme (12) has large error near the origin. From equation (22), the pressure
should be constant near the origin. However, the result from scheme (12) has an incorrect
large jump near the origin.
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5 Conclusion

We tested WENO scheme for radially symmetric cylindrical and spherical grid. It is shown
that conservativity of the numerical scheme is crucial to have accurate shock location and
strength. Traditional implementation to solve the cylindrical and spherical problem with the
geometric source terms does not preserve the mass and energy, although it can achieve higher
than second order accuracy. Treating the cylindrical or spherical grid as smooth nonuniform
grid as WENO finite-difference scheme applied to general curvilinear grid has large error
near the origin so that it failed for some initial conditions. There is also a risk with this
approach that the discontinuity will be spread out because the weight in WENO scheme will
be smoothed out by the geometric factor (r for 2-D and r2 for 3-D).

The modified conservative WENO finite-difference scheme produces good results. However,
it is only of second order accuracy in theory. This leads to a question that the complexity
and effort of the WENO may not be worthy for such low order of accuracy. Actually, a
second-order TVD scheme may work much efficient in this case.

We should mention that the global flux-splitting may not work even for high order method.
The spurious solution is generated if the global maximum characteristics speed is far more
larger than the local speed near the shock or contact. For robustness, we suggest the local
flux-splitting method be used.

The WENO finite-volume scheme can achieve both the conservation law and the high order
accuracy. However, it might be too much costly for multi-dimensional problem. Since we
have an orthogonal uniform grid, a low order method with fine grid may work more efficient
than the high order WENO finite-volume scheme.
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